Woman In The Garden
Woman In The Garden
©2025

Case Study #1

Case Study #1

Specialized STT for a leading AI Voice startup specializing in automated telephone assistants for major pizzeria chains.

Customer problems

(LTC® — 01)

2025

Menu & Product Confusion

Generic STT misrecognized pizza names ("Quatre Fromages"), toppings, and order modifications. Resulted in wrong orders and frustrated customers.

Linguistic Diversity

Struggles with French regional accents and rapid speech patterns caused frequent transcription mistakes, impacting customer experience.

Latency

Our client struggled to find an STT solution that offered both high accuracy and low latency. Generic providers forced them to choose, compromising either customer experience (slow responses) or order precision (high errors).

Fragrance Bottle
Shoes
Bag

Results

(LTC® — 02)

2025

we provide them with the best STT they ever tried.

30%

30%

WER improvement

30%

30%

WER improvement

0ms

0ms

Average latency

0ms

0ms

Average latency

0h

0h

Time to deliver

0h

0h

Time to deliver

Recognition Awards

(CQ® — 03)

©2025

Exemple of audio tests

Exemple of audio tests

Expected result

Ça serait pour faire une commande s'il vous plaît

0:00/1:34

C'est pour faire une commande, s'il vous plaît.

0.35s

C'est pour faire une comment tu fais

1.36s

pour faire une comment tu fais

2.77s

C'est pour prendre comment tu fais."

0.96s

Expected result

Bouteille maxi coca cola zero

0:00/1:34

Une bouteille "Maxi-Coca Zero".

0.49s

Bouteille maxi coquin zéro.

1.22s

une bouteille maxi coca zéro

2.99s

Bouteille, Maxi Coca 0.

1.57s

Expected result

La glace bourbon de Madagascar.

0:00/1:34

La glace bourbon de Madagascar.

0.31s

La glace au beau-vent de Madagascar.

1.78s

la glace gourmande Madagascar

1.37s

La glace Bourbon de Madagascar.

1.25s

Expected result

Euh, valide la commande.

0:00/1:34

Euh, valide la commande.

0.31s

Un valet de la commande.

1.43s

vallée de la

2.77s

Valide la comment ?

1.43s

Expected result

Valide

0:00/1:34

Valide.

0.31s

Valide.

1.60s

vanille

2.77s

Zanis.

0.96s

Expected result

Heu non finalement je la veux pas

0:00/1:34

Non, finalement, je ne la veux pas.

0.31s

Non finalement je vous avais peur.

1.78s

Non, finalement, je ne veux pas.

0.51s

Non, finalement, je ne l'avais pas.

1.08s

Man Side View

The solution

(LTC® — 04)

2025

01
Training your model

$300 training fee

We train your Speech-to-Text (STT) model specifically on your business's unique vocabulary: industry jargon, acronyms, and common customer phrases.

02
Performance proof

We guarantee your trained STT model will achieve at least +30% WER compared to any standard market STT model on your specific data. If this target isn't met, you receive a full refund.

03
Production

$0.006 /min

Once trained, we provide you with an optimized API endpoint. You simply integrate this endpoint to replace your existing STT provider for improved performance.

https://www.latice.ai/

Woman Side Pose

Let's Work Together

(CQ® — 5)

©2025

Contact Now

Contact us!

Let’s create something amazing together! Reach out I’d love to hear about your project and ideas.

24/7 Full Time Support

24/7 Full Time Support

Available Worldwide

Available Worldwide

Woman In The Garden
Woman In The Garden
©2025

Case Study #1

Whether it’s through stunning designs or seamless user experiences, I’m dedicated to delivering work that inspires and resonates.

Customer problems

2025

Menu & Product Confusion

Generic STT misrecognized pizza names ("Quatre Fromages"), toppings, and order modifications. Resulted in wrong orders and frustrated customers.

Linguistic Diversity

Struggles with French regional accents and rapid speech patterns caused frequent transcription mistakes, impacting customer experience.

Latency

Our client struggled to find an STT solution that offered both high accuracy and low latency. Generic providers forced them to choose, compromising either customer experience (slow responses) or order precision (high errors).

Fragrance Bottle
Shoes
Bag

Results

2025

we provide them with the best STT they ever tried.

30%

30%

WER improvement

0ms

0ms

Average latency

0h

0h

Time to deliver

Recognition Awards

©2025

Exemple of audio tests

Expected result

Ça serait pour faire une commande s'il vous plaît

0:00/1:34

C'est pour faire une commande, s'il vous plaît.

0.35s

C'est pour faire une comment tu fais

1.36s

pour faire une comment tu fais

2.77s

C'est pour prendre comment tu fais."

0.96s

Expected result

Bouteille maxi coca cola zero

0:00/1:34

Une bouteille "Maxi-Coca Zero".

0.49s

Bouteille maxi coquin zéro.

1.22s

une bouteille maxi coca zéro

2.99s

Bouteille, Maxi Coca 0.

1.57s

Expected result

La glace bourbon de Madagascar.

0:00/1:34

La glace bourbon de Madagascar.

0.31s

La glace au beau-vent de Madagascar.

1.78s

la glace gourmande Madagascar

1.37s

La glace Bourbon de Madagascar.

1.25s

Expected result

Euh, valide la commande.

0:00/1:34

Euh, valide la commande.

0.31s

Un valet de la commande.

1.43s

vallée de la

2.77s

Valide la comment ?

1.43s

Expected result

Valide

0:00/1:34

Valide.

0.31s

Valide.

1.60s

vanille

2.77s

Zanis.

0.96s

Expected result

Heu non finalement je la veux pas

0:00/1:34

Non, finalement, je ne la veux pas.

0.31s

Non finalement je vous avais peur.

1.78s

Non, finalement, je ne veux pas.

0.51s

Non, finalement, je ne l'avais pas.

1.08s

Man Side View

The solution

2025

01
Training your model

$300 training fee

We train your Speech-to-Text (STT) model specifically on your business's unique vocabulary: industry jargon, acronyms, and common customer phrases.

02
Performance proof

We guarantee your trained STT model will achieve at least +30% WER compared to any standard market STT model on your specific data. If this target isn't met, you receive a full refund.

03
Production

$0.006 /min

Once trained, we provide you with an optimized API endpoint. You simply integrate this endpoint to replace your existing STT provider for improved performance.

https://www.latice.ai/

Woman Side Pose

Let's Work Together

©2025

Contact Now

Contact us!

Let’s create something amazing together! Reach out I’d love to hear about your project and ideas.

24/7 Full Time Support

Available Worldwide

Woman In The Garden
Woman In The Garden
©2025

Case Study #1

Whether it’s through stunning designs or seamless user experiences, I’m dedicated to delivering work that inspires and resonates.

Customer problems

(LTC® — 01)

2025

Menu & Product Confusion

Generic STT misrecognized pizza names ("Quatre Fromages"), toppings, and order modifications. Resulted in wrong orders and frustrated customers.

Linguistic Diversity

Struggles with French regional accents and rapid speech patterns caused frequent transcription mistakes, impacting customer experience.

Latency

Our client struggled to find an STT solution that offered both high accuracy and low latency. Generic providers forced them to choose, compromising either customer experience (slow responses) or order precision (high errors).

Fragrance Bottle
Shoes
Bag

Results

(LTC® — 02)

2025

we provide them with the best STT they ever tried.

30%

30%

WER improvement

0ms

0ms

Average latency

0h

0h

Time to deliver

Recognition Awards

(CQ® — 03)

©2025

Exemple of audio tests

Expected result

Ça serait pour faire une commande s'il vous plaît

0:00/1:34

C'est pour faire une commande, s'il vous plaît.

0.35s

C'est pour faire une comment tu fais

1.36s

pour faire une comment tu fais

2.77s

C'est pour prendre comment tu fais."

0.96s

Expected result

Bouteille maxi coca cola zero

0:00/1:34

Une bouteille "Maxi-Coca Zero".

0.49s

Bouteille maxi coquin zéro.

1.22s

une bouteille maxi coca zéro

2.99s

Bouteille, Maxi Coca 0.

1.57s

Expected result

La glace bourbon de Madagascar.

0:00/1:34

La glace bourbon de Madagascar.

0.31s

La glace au beau-vent de Madagascar.

1.78s

la glace gourmande Madagascar

1.37s

La glace Bourbon de Madagascar.

1.25s

Expected result

Euh, valide la commande.

0:00/1:34

Euh, valide la commande.

0.31s

Un valet de la commande.

1.43s

vallée de la

2.77s

Valide la comment ?

1.43s

Expected result

Valide

0:00/1:34

Valide.

0.31s

Valide.

1.60s

vanille

2.77s

Zanis.

0.96s

Expected result

Heu non finalement je la veux pas

0:00/1:34

Non, finalement, je ne la veux pas.

0.31s

Non finalement je vous avais peur.

1.78s

Non, finalement, je ne veux pas.

0.51s

Non, finalement, je ne l'avais pas.

1.08s

Man Side View

The solution

(LTC® — 04)

2025

01
Training your model

$300 training fee

We train your Speech-to-Text (STT) model specifically on your business's unique vocabulary: industry jargon, acronyms, and common customer phrases.

02
Performance proof

We guarantee your trained STT model will achieve at least +30% WER compared to any standard market STT model on your specific data. If this target isn't met, you receive a full refund.

03
Production

$0.006 /min

Once trained, we provide you with an optimized API endpoint. You simply integrate this endpoint to replace your existing STT provider for improved performance.

https://www.latice.ai/

Woman Side Pose

Let's Work Together

(CQ® — 5)

©2025

Contact Now

Contact us!

Let’s create something amazing together! Reach out I’d love to hear about your project and ideas.

24/7 Full Time Support

Available Worldwide