

©2025
Case Study #1
Case Study #1
Specialized STT for a leading AI Voice startup specializing in automated telephone assistants for major pizzeria chains.
Customer problems
(LTC® — 01)
2025
Menu & Product Confusion
Generic STT misrecognized pizza names ("Quatre Fromages"), toppings, and order modifications. Resulted in wrong orders and frustrated customers.
Linguistic Diversity
Struggles with French regional accents and rapid speech patterns caused frequent transcription mistakes, impacting customer experience.
Latency
Our client struggled to find an STT solution that offered both high accuracy and low latency. Generic providers forced them to choose, compromising either customer experience (slow responses) or order precision (high errors).



Results
(LTC® — 02)
2025
we provide them with the best STT they ever tried.
30%
30%
WER improvement
30%
30%
WER improvement
0ms
0ms
Average latency
0ms
0ms
Average latency
0h
0h
Time to deliver
0h
0h
Time to deliver
Recognition Awards
(CQ® — 03)
©2025
Exemple of audio tests
Exemple of audio tests
Expected result
Ça serait pour faire une commande s'il vous plaît
0:00/1:34

C'est pour faire une commande, s'il vous plaît.
0.35s

C'est pour faire une comment tu fais
1.36s

pour faire une comment tu fais
2.77s

C'est pour prendre comment tu fais."
0.96s
Expected result
Bouteille maxi coca cola zero
0:00/1:34

Une bouteille "Maxi-Coca Zero".
0.49s

Bouteille maxi coquin zéro.
1.22s

une bouteille maxi coca zéro
2.99s

Bouteille, Maxi Coca 0.
1.57s
Expected result
La glace bourbon de Madagascar.
0:00/1:34

La glace bourbon de Madagascar.
0.31s

La glace au beau-vent de Madagascar.
1.78s

la glace gourmande Madagascar
1.37s

La glace Bourbon de Madagascar.
1.25s
Expected result
Euh, valide la commande.
0:00/1:34

Euh, valide la commande.
0.31s

Un valet de la commande.
1.43s

vallée de la
2.77s

Valide la comment ?
1.43s
Expected result
Valide
0:00/1:34

Valide.
0.31s

Valide.
1.60s

vanille
2.77s

Zanis.
0.96s
Expected result
Heu non finalement je la veux pas
0:00/1:34

Non, finalement, je ne la veux pas.
0.31s

Non finalement je vous avais peur.
1.78s

Non, finalement, je ne veux pas.
0.51s

Non, finalement, je ne l'avais pas.
1.08s

The solution
(LTC® — 04)
2025
01
Training your model
$300 training fee
We train your Speech-to-Text (STT) model specifically on your business's unique vocabulary: industry jargon, acronyms, and common customer phrases.
02
Performance proof
We guarantee your trained STT model will achieve at least +30% WER compared to any standard market STT model on your specific data. If this target isn't met, you receive a full refund.
03
Production
$0.006 /min
Once trained, we provide you with an optimized API endpoint. You simply integrate this endpoint to replace your existing STT provider for improved performance.
https://www.latice.ai/

Let's Work Together
(CQ® — 5)
©2025
Contact Now
Contact us!
Let’s create something amazing together! Reach out I’d love to hear about your project and ideas.
24/7 Full Time Support
24/7 Full Time Support
Available Worldwide
Available Worldwide


©2025
Case Study #1
Whether it’s through stunning designs or seamless user experiences, I’m dedicated to delivering work that inspires and resonates.
Customer problems
2025
Menu & Product Confusion
Generic STT misrecognized pizza names ("Quatre Fromages"), toppings, and order modifications. Resulted in wrong orders and frustrated customers.
Linguistic Diversity
Struggles with French regional accents and rapid speech patterns caused frequent transcription mistakes, impacting customer experience.
Latency
Our client struggled to find an STT solution that offered both high accuracy and low latency. Generic providers forced them to choose, compromising either customer experience (slow responses) or order precision (high errors).



Results
2025
we provide them with the best STT they ever tried.
30%
30%
WER improvement
0ms
0ms
Average latency
0h
0h
Time to deliver
Recognition Awards
©2025
Exemple of audio tests
Expected result
Ça serait pour faire une commande s'il vous plaît
0:00/1:34

C'est pour faire une commande, s'il vous plaît.
0.35s

C'est pour faire une comment tu fais
1.36s

pour faire une comment tu fais
2.77s

C'est pour prendre comment tu fais."
0.96s
Expected result
Bouteille maxi coca cola zero
0:00/1:34

Une bouteille "Maxi-Coca Zero".
0.49s

Bouteille maxi coquin zéro.
1.22s

une bouteille maxi coca zéro
2.99s

Bouteille, Maxi Coca 0.
1.57s
Expected result
La glace bourbon de Madagascar.
0:00/1:34

La glace bourbon de Madagascar.
0.31s

La glace au beau-vent de Madagascar.
1.78s

la glace gourmande Madagascar
1.37s

La glace Bourbon de Madagascar.
1.25s
Expected result
Euh, valide la commande.
0:00/1:34

Euh, valide la commande.
0.31s

Un valet de la commande.
1.43s

vallée de la
2.77s

Valide la comment ?
1.43s
Expected result
Valide
0:00/1:34

Valide.
0.31s

Valide.
1.60s

vanille
2.77s

Zanis.
0.96s
Expected result
Heu non finalement je la veux pas
0:00/1:34

Non, finalement, je ne la veux pas.
0.31s

Non finalement je vous avais peur.
1.78s

Non, finalement, je ne veux pas.
0.51s

Non, finalement, je ne l'avais pas.
1.08s

The solution
2025
01
Training your model
$300 training fee
We train your Speech-to-Text (STT) model specifically on your business's unique vocabulary: industry jargon, acronyms, and common customer phrases.
02
Performance proof
We guarantee your trained STT model will achieve at least +30% WER compared to any standard market STT model on your specific data. If this target isn't met, you receive a full refund.
03
Production
$0.006 /min
Once trained, we provide you with an optimized API endpoint. You simply integrate this endpoint to replace your existing STT provider for improved performance.
https://www.latice.ai/

Let's Work Together
©2025
Contact Now
Contact us!
Let’s create something amazing together! Reach out I’d love to hear about your project and ideas.
24/7 Full Time Support
Available Worldwide


©2025
Case Study #1
Whether it’s through stunning designs or seamless user experiences, I’m dedicated to delivering work that inspires and resonates.
Customer problems
(LTC® — 01)
2025
Menu & Product Confusion
Generic STT misrecognized pizza names ("Quatre Fromages"), toppings, and order modifications. Resulted in wrong orders and frustrated customers.
Linguistic Diversity
Struggles with French regional accents and rapid speech patterns caused frequent transcription mistakes, impacting customer experience.
Latency
Our client struggled to find an STT solution that offered both high accuracy and low latency. Generic providers forced them to choose, compromising either customer experience (slow responses) or order precision (high errors).



Results
(LTC® — 02)
2025
we provide them with the best STT they ever tried.
30%
30%
WER improvement
0ms
0ms
Average latency
0h
0h
Time to deliver
Recognition Awards
(CQ® — 03)
©2025
Exemple of audio tests
Expected result
Ça serait pour faire une commande s'il vous plaît
0:00/1:34

C'est pour faire une commande, s'il vous plaît.
0.35s

C'est pour faire une comment tu fais
1.36s

pour faire une comment tu fais
2.77s

C'est pour prendre comment tu fais."
0.96s
Expected result
Bouteille maxi coca cola zero
0:00/1:34

Une bouteille "Maxi-Coca Zero".
0.49s

Bouteille maxi coquin zéro.
1.22s

une bouteille maxi coca zéro
2.99s

Bouteille, Maxi Coca 0.
1.57s
Expected result
La glace bourbon de Madagascar.
0:00/1:34

La glace bourbon de Madagascar.
0.31s

La glace au beau-vent de Madagascar.
1.78s

la glace gourmande Madagascar
1.37s

La glace Bourbon de Madagascar.
1.25s
Expected result
Euh, valide la commande.
0:00/1:34

Euh, valide la commande.
0.31s

Un valet de la commande.
1.43s

vallée de la
2.77s

Valide la comment ?
1.43s
Expected result
Valide
0:00/1:34

Valide.
0.31s

Valide.
1.60s

vanille
2.77s

Zanis.
0.96s
Expected result
Heu non finalement je la veux pas
0:00/1:34

Non, finalement, je ne la veux pas.
0.31s

Non finalement je vous avais peur.
1.78s

Non, finalement, je ne veux pas.
0.51s

Non, finalement, je ne l'avais pas.
1.08s

The solution
(LTC® — 04)
2025
01
Training your model
$300 training fee
We train your Speech-to-Text (STT) model specifically on your business's unique vocabulary: industry jargon, acronyms, and common customer phrases.
02
Performance proof
We guarantee your trained STT model will achieve at least +30% WER compared to any standard market STT model on your specific data. If this target isn't met, you receive a full refund.
03
Production
$0.006 /min
Once trained, we provide you with an optimized API endpoint. You simply integrate this endpoint to replace your existing STT provider for improved performance.
https://www.latice.ai/

Let's Work Together
(CQ® — 5)
©2025
Contact Now
Contact us!
Let’s create something amazing together! Reach out I’d love to hear about your project and ideas.
24/7 Full Time Support
Available Worldwide